ALLERGY OR TOLERANCE -A QUESTION OF BALANCE

Christina West MD, PhD Associate Professor and Senior Consultant in Pediatrics, Pediatric allergist Clinical Sciences, Pediatrics, Umeå University

OUTLINE

- Key players in oral tolerance development
- The role of
 - Exposure to food antigens Commensal microbiota

THE IMMUNE SYSTEM

A cell and tissue system that protects us against invading pathogens

Provides tolerance to "non-threats" such as food components, commensal microbiota and to "self"

Must learn to

distinguish "harmless" from "dangerous"

- Normally it is protective (=beneficial)
- Both non-specific, innate (natural) responses and specific, acquired responses
- A component of memory
- Involves numerous different cell types including antigen presenting cells (especially dendritic cells), macrophages and T and B lymphocytes

- Like the orchestra that brings different sounds into harmony, the immune system does the same to protect us!
- Immune system and orchestras are fantastic examples of coordination of diverse parts that work together to complement each other

IMMUNE SYSTEM DEVELOPMENT

Immune cells and organs proliferate rapidly in the first trimester

Development of secondary lymphoid organs largely complete at birth, recent work indicates that these organs, **particularly the GALT*,** are highly responsive to enviromental stimuli (antigens) throughout life

Mold et al, Science 2010 Palmer AC, Advances in Nutrition 2011

*Gut associated Lymphoid Tissue

THE IMMUNE SYSTEM IN THE GUT MUST LEARN TO <u>NOT REACT TO</u>

• Food components

Constant and massive antigenic (allergenic) pressure on the **IMMUNE SYSTEM IN THE GUT**

-2/3 of the cellular component situated in the gut

Invasive pathogens

>> Strong protective immunity

Food proteins and commensal microbiota

PUTATIVE MECHANISMS IN ORAL TOLERANCE IN HUMANS

• Anergy

o "I see but I don't react"

- Clonal deletion
 - "I destroy reactive/responsive cells"
- Activation of regulatory cells and/or mediators
 - "I downregulate overly active immune responses"

COLONIZATION CRITICAL FOR IMMUNE DEVELOPMENT AND REGULATION

- Clearly shown in murine models that there is an early developmental "window" during which microbial colonization and exposure to food antigens induce appropriate maturation of type 2 responses and IgE regulation¹
- If the window of opportunity is missed, this is no longer possible

¹Sudo K, et al. J Immunol 1997; 159:1739-45. ²Pecquet C, et al. J immunol 1999;96-278-85.

"Optimal Window" for induction of tolerance?

Complementary feeding in 4-6mo window Reduced risk of:

 Food allergy 	Poole et al. 2006
 Coeliac autoimmunity 	Norris et al. 2005
 Islet cell autoimmunity 	Norris et al. 2003
 Coeliac disease 	Norris et al. 2005

Courtesy of M Tulic and S Prescott

"Optimal Window" for induction of tolerance?

Exposure too early (<3-4 months): increased risk

Of food allergy and autoimmunity Poole et al. 2006, Norris et al. 2005, Norris et al. 2003

- · colonization not well established
- gut immaturity (increased permeability)

"Optimal Window" for induction of tolerance?

Exposure too late (>6 months): increased risk

Of food allergy and autoimmunity Poole et al. 2006, Norris et al. 2005, Norris et al. 2003

- missed optimal "tolerance" window?
- •new prevention studies: earlier introduction of "allergenic" foods

Table 1. Overview of randomized clinical trials that have assessed early versus late introduction of complementary foods for allergy prevention

Conducted RCTs
assessing early vs late
introduction of foods

- 1 RCT peanut
- 5 RCTs egg
- 1 RCT (cow's milk, peanut, hardboiled egg, sesame, cod and wheat)

Trial name Country	Study population	Intervention	Primary outcome	Ref.
LEAP (Learning About Peanut Allergy) UK	Infants with severe eczema and/or egg allergy (n = 640 randomized, 319 to peanut, 321 to avoidance)	Peanut (snack or peanut butter) from 4 to 11 months to 5 years or Peanut avoidance until 5 years	Peanut allergy ¹ at 5 years; in the group with negative SPT to peanut ($n = 530$): 1.9% in the active vs. 13.7% in the avoidance group ($p < 0.001$); in the group with SPT to peanut 1–4 mm: 10.6% in the active vs. 35.3% in the avoidance group ($p = 0.004$)	42
STAR (Solids Timing for Allergy Reduction) Australia	Infants with moderate to severe eczema ($n = 86$ randomized, 49 to egg, 37 to placebo)	Pasteurized raw whole egg powder or Rice powder (placebo) from 4 to 8 months	Egg allergy ¹ at 12 months; 33% in the active vs. 51% in the placebo group (relative risk 0.65, 95% CI 0.38–1.11, $p = 0.11$)	45
STEP (Starting Time of Egg Protein) Australia	Infants of allergic mothers (n = 820 randomized, 407 to egg, 413 to placebo)	Pasteurized raw whole egg powder or Rice powder (placebo) from 4 to 6 months until 10 months	Egg allergy ⁴ at 12 months; 7% in the active vs. 10.3% in the placebo group (adjusted relative risk 0.75, 95% CI 0.48–1.17, $p = 0.20$)	46
BEAT (Beating Egg Allergy Trial) Australia	Infants with 1 (or both) parents with a history of allergic disease $(n = 319$ randomized, 165 to egg, 154 to placebo)	Pasteurized raw whole egg powder or Rice powder (placebo) from 4 to 8 months	Egg sensitization ² at 12 months; 11% in the active vs. 20% in the placebo group (odds ratio 0.46, 95% CI 0.22–0.95, $p = 0.03$)	47
PETIT (Prevention of Egg Allergy with Tiny Amount Intake) Japan	Infants with eczema ($n = 147$ randomized, 73 to egg, 74 to placebo)	Heated egg powder (50 mg) or Squash powder (placebo) from 6 to 9 months, with a dose increase of egg protein from 9 to 12 months	Egg allergy ¹ at 12 months; 9% in the active vs. 38% in the placebo group (risk ratio 0.221, 95% CI 0.09–0.543, <i>p</i> = 0.0001)	48
HEAP (Hen's Egg Allergy Prevention Trial) Germany	Infants from the general population (n = 406 screened for egg sensitization, 383 nonsensitized randomized, 184 to egg, 199 to placebo)	Pasteurized egg white powder or Rice powder (placebo) from 4 to 6 months until 12 months	Egg sensitization ³ at 12 months; 5.6% in the active vs. 2.6% in the placebo group (relative risk 2.20, 95% CI 0.68–7.14, $p = 0.24$)	49
EAT (Enquiring About Tolerance) UK	Exclusively breastfed infants for at least 3 months from the general population ($n = 1,303$ randomized, 652 to early introduction of 6 foods while breastfeeding, 651 to exclusive breastfeeding and no allergenic foods before 6 months)	Continued breastfeeding with introduction of cow's milk, peanut, hard-boiled egg, sesame, cod, and wheat in a sequential order from 3 months (early introduction) or Exclusive breastfeeding for 6 months (standard introduction)	Allergy to any of the 6 foods at 3 years: 5.6% in the early-introduction vs. 7.1% in the stan dard-introduction group (relative risk 0.80, 95% CI 0.51-1.25, $p = 0.32$)	50

SPT, skin prick test. ¹ Confirmed by an oral food challenge. ² Egg white skin prick test \geq 3 mm. ³ Specific IgE to egg \geq 0.35 kU/L.

West C. Introduction of complementary foods. Ann Nutr Metab. 2017;70(suppl.2):47-54.

From: Timing of Allergenic Food Introduction to the Infant Diet and Risk of Allergic or Autoimmune Disease A Systematic Review and Meta-analysis

JAMA. 2016;316(11):1181-1192. doi:10.1001/jama.2016.12623

"...early egg or peanut introduction to the infant diet was associated with lower risk of developing egg or peanut allergy. These findings must be considered in the context of limitations in the primary studies."

Ierodiakonou D, et al. Jama. 2016;316:1181-92.

Few studies, (mostly) high risk cohorts, different interventions, implementation?

- Infant feeding guidelines <u>recommend complementary</u> <u>foods, including allergenic foods, to be introduced from</u> <u>4 to 6 months</u> of age irrespective of family history risk (EAACI, ESPGHAN)
- Interim guidelines from 10 International Pediatric Allergy Associations state that healthcare providers should recommend the introduction of peanutcontaining products into the diets of infants at high risk of allergic disease in countries where peanut allergy is prevalent, for allergy prevention

Fleischer DM, et al. J Allergy Clin Immunol. 2015;136:258-6.

Nature Reviews | Gastroenterology & Hepatology

Healthy skin

barrer

No

Peanut allerav

Differential immune responses in the gut (oral tolerance) and skin (IgE sensitization and food allergy)

Nowak-Wegrzyn, A. *et al.* (2016) Food allergy and the gut. Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.201 6.187

Early egg introduction induces egg-specific IgG4

The role of our commensal gut microbiota

• **Microbiota establishment** Driven by host factors and enviromental exposures

• Reduced microbial stimulation Will delay immune maturation and regulation

High biodiversity
 Short-chain fatty acid (SCFA) production
and induction of T regulatory cells

• Low biodiversity/dysbiosis IgE production and pro-inflammatory responses

Sjödin KS, Vidman L, Rydén P, West CE. Emerging evidence of the role of gut microbiota in the development of allergic diseases.

Curr Opin Allergy Immunol. 2016;16:390-5.

Succesive establishment of the gut microbiota in childhood

4 mo 6 mo 1 yr 8 yrs

Sjödin KS, Vidman L, Rydén P, West CE. Emerging evidence of the role of gut microbiota in the development of allergic diseases. Curr Opin Allergy Immunol. 2016;16:390-5.

UMEÅ UNIVERSITY

Dietert RR. NeoReviews February 2018, VOLUME 19 / ISSUE 2 pp. e78e88.

1) Keep the **regulatory tone** of the immune system

Gut

microbiota

2) Modulate **Th2** responses

3) Enhance gut barrier integrity and functions

Mucin production

Gut-lung-axis

Ligands (LPS, peptidoglycan) Metabolites (SCFA) Immune cells

West et al, Clin Exp Allergy 2015; 45:43-53 Ho et al, Curr Allergy Asthma Rep 2018;18:27 4) **Cross-talk** between the gut microbiota and distant organs

Sjödin Simonyté K, Hammarström ML, Rydén P, Sjödin A, Hernell O, Engstrand L, West CE. Temporal and long-term gut microbiota variation in allergic disease: A prospective study from infancy to school age. Allergy, 2019;74:176-185.

Oral tolerance

Postnatal phenomenon

Timing and exposure to food antigens and commensal microbes IgA, IgG4 Antigen presentation

T regulatory cells FOXP3, IL-10, TGF-b

Umeå University Pediatric study nurses Pediatric laboratory analysts Dr Kotryna Simonyté Sjödin A/Prof Patrik Rydén Dr Andreas Sjödin Prof Olle Hernell Prof Marie-Louise Hammarström

Univ. of Western Australia Prof Susan Prescott Prof Meri Tulic Dr Debbie Palmer

SciLife Lab/Karolinska Institu Prof Lars Engstrand Dr Daniel Lundin Dr Maike Seifert Dr Hugo Wefer

Participating families

Funding Bodies